x^2=1234

Simple and best practice solution for x^2=1234 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x^2=1234 equation:



x^2=1234
We move all terms to the left:
x^2-(1234)=0
a = 1; b = 0; c = -1234;
Δ = b2-4ac
Δ = 02-4·1·(-1234)
Δ = 4936
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{4936}=\sqrt{4*1234}=\sqrt{4}*\sqrt{1234}=2\sqrt{1234}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{1234}}{2*1}=\frac{0-2\sqrt{1234}}{2} =-\frac{2\sqrt{1234}}{2} =-\sqrt{1234} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{1234}}{2*1}=\frac{0+2\sqrt{1234}}{2} =\frac{2\sqrt{1234}}{2} =\sqrt{1234} $

See similar equations:

| 12-8x+x2=0 | | 2(6x + 1) = 4(x – 5) – 2 | | 4(x-4)+72=-2x | | p/11=-2 | | x^2-4=(x+2) | | (12x+2)(13x+19)=121 | | 2.4x-9.1x=112.5x-39.44 | | q+14=24 | | 4(7v-1)-4v=-244 | | 9m+-16m=7 | | 9/5+9x=1/3 | | 55+25r=62+20r | | 5y+5y-8y+2y=12 | | x=271134729 | | 4.7x+19.4=8.7x-21.6 | | (-3+x)=6 | | (4x=5)=137 | | x/2+(100-60)=51 | | 4(1-4x)=-7(4+2x) | | 3(3/5+3x)=1/3 | | 13c-2=-41 | | 7+x=1/2(4x−2) | | 55,000+2,500r=62,000+2,000 | | 12x+2+13x+19=121 | | 19m-17m-2m+4m+4m=16 | | 6^9x7x90=190 | | X(4x-10)=-126 | | -4(3z-1)=-2 | | x/2(100-60)=51 | | 8-5(x-2)=3 | | 2.4x-9.1x=-12.5x=39.44 | | 6c-82c=16 |

Equations solver categories